66小说网 > 我的系统能刷数学经验 > 第165章 重启SLRM研究 一

第165章 重启SLRM研究 一


忙完了这些琐事,徐辰的生活重新回归平静。

徐辰的思绪,重新回到了那个被他暂时搁置的AI项目——LAART(逻辑增强型大语言模型)。

在去德国之前,他利用学校计算中心的资源,跑通了LAART模型的第一个核心模块——SLRM(符号逻辑推理模块)。那个Demo虽然简陋,但却在CLUTRR逻辑推理数据集上,跑出了惊人的95.12%的准确率。

这个成绩,足以让任何一个AI研究者疯狂。

但徐辰并不满意。

“95%……还不够。”

徐辰坐在研究室里,盯着屏幕上那个复杂的网络结构图,眉头微蹙。

“这只是一个‘拼凑’出来的结果。Gumbel-Box虽然解决了梯度截断的问题,但它在高维空间中的拓扑性质,依然不够完美。”

……

他想起了Transformer架构的发展史。

2017年,Google  Brain团队提出了Transformer。那是一个划时代的架构,但它并非完美无缺。

最初的Transformer,使用的是绝对位置编码。后来,人们发现这种编码方式在处理长文本时效果不佳,于是有了相对位置编码,再后来又有了旋转位置编码。

最初的Attention机制,计算复杂度是O(N^2),随着序列长度增加,计算量呈指数级爆炸。于是,人们发明了稀疏注意力、线性注意力、闪电注意力……

每一个组件,都在不断的迭代中进化。

“Transformer之所以强大,是因为它的每一个组件——注意力机制、前馈网络、归一化、激活函数——虽然单独拿出来都有明确的数学定义,但当它们被堆叠成几百层、拥有几千亿参数后,它们之间的相互作用,会产生极度复杂的非线性动力学。”

“这种动力学,目前还没有任何数学工具能够精确预测。”

“所以,AI领域才会有那么多‘炼丹师’。大家都在试,都在猜,都在赌。”

事实上,Transformer本身就是一个典型的“学术成果”。在它诞生之初,虽然在机器翻译任务上取得了SOTA,但并没有人预料到它会成为后来大语言模型(LLM)的基石。它只是证明了“自注意力机制可以替代循环神经网络(RNN)”这条路是走得通的。

真正让Transformer爆发威力的,是后来OpenAI的GPT系列、谷歌的BERT系列,以及无数工程师在海量数据和算力上的疯狂堆叠与调优。是工业界的工程化能力,将这个学术上的“好点子”,变成了改变世界的“核武器”。

……

徐辰的SLRM模块,其实也是类似的情况,也是一个学术上证明能走通的路线。

SLRM模块,本质上是给Transformer打的一个“补丁”。

如果把Transformer比作人类大脑中的“快系统”,负责直觉、联想和快速生成;那么SLRM就是那个冷静、严谨的“慢系统”,负责逻辑校验、推理和纠错。

当Transformer想要“胡说八道”时,SLRM会通过几何计算,冷酷地告诉它:“逻辑不通,闭嘴。”

这个思路是革命性的。

但徐辰也很清楚,从一个“革命性的思路”到一个“成熟的商业产品”,中间隔着一道名为“工程化”的天堑。

……

虽然工程化还很遥远,那么能不能直接注册专利,或者自己开公司赚钱呢?

也不行。

原因很简单。

首先,算法专利在AI界几乎就是一张“纸老虎”。

打个比方,这就好比在面食还没出现的远古时代,你第一个发现了“面粉加水和面,可以做出面点”这个核心逻辑。你兴冲冲地跑去申请专利,结果呢?

别人只需要在面粉里掺一点点玉米面,或者加一捏捏糯米粉,在法律意义上,这就成了一种全新的“杂粮面点”或“软糯面点”。你的专利根本拦不住全世界的人去蒸馒头。

真正的“护城河”,从来不是那个公开的公式,而是那些秘而不宣的“配方细节”。

面粉加水能成面团,这只是基础知识。但要做出一个皮薄馅大、松软多汁的顶级包子,到底该加多少水?用哪种酵母?发酵几分钟?揉面的力度是多少?

在AI的世界里,这些“配方”对应的就是基于海量数据和恐怖算力调教出来的“参数权重”。

徐辰手里的SLRM架构,只是告诉了全世界“面粉加水能做包子”。但要训练出一个真正能商用的、具备通用逻辑能力的庞大模型,需要消耗的是数以亿计的电费、PB级别的精选数据,以及成千上万次失败后的参数微调。

这些“炼丹”得出的参数权重,才是真正值钱的“秘方”,也是OpenAI等巨头死死捂在手里的核心资产。

……

其次,学术成果只是证明了“这条路走得通”,但这并不意味着“这条路好走”。

在AI领域,每年都有成千上万篇论文声称提出了“颠覆性”的新算法,但真正能落地并产生商业价值的,凤毛麟角。

比如,曾经红极一时的“胶囊网络”,由深度学习教父Hinton提出,号称要取代卷积神经网络,解决其无法识别物体空间关系的缺陷。理论上很美,但在实际应用中,因为计算复杂度过高、训练难以收敛,至今仍未成为主流。

再比如,“神经ODE”,试图用常微分方程来建模连续深度的神经网络,数学上极其优雅,但在处理大规模离散数据时,效率和稳定性都远不如传统的ResNet。

还有无数试图挑战Transformer霸主地位的新架构,如Reformer、Linformer、Performer……它们在特定的benchmark上或许能跑出漂亮的分数,但在通用性和扩展性上,往往因为各种各样的工程问题而被抛弃。

学术界的“SOTA”(State  of  the  Art,当前最佳),往往是在特定的数据集、特定的超参数设置下跑出来的“实验室产物”。而工业界需要的,是鲁棒性、可扩展性、低延迟、低成本的“工程化产品”。

在实验室里跑通一个Demo,和在工业界部署一个能服务亿万用户的产品,是完全两个维度的挑战。你需要解决并发问题、延迟问题、成本问题……你需要说服投资者相信这个技术能赚钱,你需要讲好一个性感的商业故事。

……


  (https://www.66kxs.net/book/4792/4792324/40815531.html)


1秒记住66小说网:www.66kxs.net。手机版阅读网址:m.66kxs.net